Sale!

Machine Learning in Python (Data Science and Deep Learning) – Udemy

(10 customer reviews)

$15

Category:

Description

What you’ll learn

  • Build artificial neural networks with Tensorflow and Keras
  • Classify images, data, and sentiments using deep learning
  • Make predictions using linear regression, polynomial regression, and multivariate regression
  • Data Visualization with MatPlotLib and Seaborn
  • Implement machine learning at massive scale with Apache Spark’s MLLib
  • Understand reinforcement learning – and how to build a Pac-Man bot
  • Classify data using K-Means clustering, Support Vector Machines (SVM), KNN, Decision Trees, Naive Bayes, and PCA
  • Use train/test and K-Fold cross validation to choose and tune your models
  • Build a movie recommender system using item-based and user-based collaborative filtering
  • Clean your input data to remove outliers
  • Design and evaluate A/B tests using T-Tests and P-Values

Show moreShow less

New! Updated for 2021 with extra content on generative models: variational auto-encoders (VAE’s) and generative adversarial models (GAN’s)

Machine Learning and artificial intelligence (AI) is everywhere; if you want to know how companies like Google, Amazon, and even Udemy extract meaning and insights from massive data sets, this data science course will give you the fundamentals you need. Data Scientists enjoy one of the top-paying jobs, with an average salary of $120,000 according to Glassdoor and Indeed. That’s just the average! And it’s not just about money – it’s interesting work too!

If you’ve got some programming or scripting experience, this course will teach you the techniques used by real data scientists and machine learning practitioners in the tech industry – and prepare you for a move into this hot career path. This comprehensive machine learning tutorial includes over 100 lectures spanning 15 hours of video, and most topics include hands-on Python code examples you can use for reference and for practice. I’ll draw on my 9 years of experience at Amazon and IMDb to guide you through what matters, and what doesn’t.

Each concept is introduced in plain English, avoiding confusing mathematical notation and jargon. It’s then demonstrated using Python code you can experiment with and build upon, along with notes you can keep for future reference. You won’t find academic, deeply mathematical coverage of these algorithms in this course – the focus is on practical understanding and application of them. At the end, you’ll be given a final project to apply what you’ve learned!

The topics in this course come from an analysis of real requirements in data scientist job listings from the biggest tech employers. We’ll cover the machine learning, AI, and data mining techniques real employers are looking for, including:

  • Deep Learning / Neural Networks (MLP’s, CNN’s, RNN’s) with TensorFlow and Keras

  • Creating synthetic images with Variational Auto-Encoders (VAE’s) and Generative Adversarial Networks (GAN’s)

  • Data Visualization in Python with MatPlotLib and Seaborn

  • Transfer Learning

  • Sentiment analysis

  • Image recognition and classification

  • Regression analysis

  • K-Means Clustering

  • Principal Component Analysis

  • Train/Test and cross validation

  • Bayesian Methods

  • Decision Trees and Random Forests

  • Multiple Regression

  • Multi-Level Models

  • Support Vector Machines

  • Reinforcement Learning

  • Collaborative Filtering

  • K-Nearest Neighbor

  • Bias/Variance Tradeoff

  • Ensemble Learning

  • Term Frequency / Inverse Document Frequency

  • Experimental Design and A/B Tests

  • Feature Engineering

  • Hyperparameter Tuning

…and much more! There’s also an entire section on machine learning with Apache Spark, which lets you scale up these techniques to “big data” analyzed on a computing cluster.

If you’re new to Python, don’t worry – the course starts with a crash course. If you’ve done some programming before, you should pick it up quickly. This course shows you how to get set up on Microsoft Windows-based PC’s, Linux desktops, and Macs.

If you’re a programmer looking to switch into an exciting new career track, or a data analyst looking to make the transition into the tech industry – this course will teach you the basic techniques used by real-world industry data scientists. These are topics any successful technologist absolutely needs to know about, so what are you waiting for? Enroll now!

  • “I started doing your course… Eventually I got interested and never thought that I will be working for corporate before a friend offered me this job. I am learning a lot which was impossible to learn in academia and enjoying it thoroughly. To me, your course is the one that helped me understand how to work with corporate problems. How to think to be a success in corporate AI research. I find you the most impressive instructor in ML, simple yet convincing.” – Kanad Basu, PhD

Who this course is for:

  • Software developers or programmers who want to transition into the lucrative data science and machine learning career path will learn a lot from this course.
  • Technologists curious about how deep learning really works
  • Data analysts in the finance or other non-tech industries who want to transition into the tech industry can use this course to learn how to analyze data using code instead of tools. But, you’ll need some prior experience in coding or scripting to be successful.
  • If you have no prior coding or scripting experience, you should NOT take this course – yet. Go take an introductory Python course first.

Course content

  • Getting Started
  • Statistics and Probability Refresher, and Python Practice
  • Predictive Models
  • Machine Learning with Python
  • Recommender Systems
  • More Data Mining and Machine Learning Techniques
  • Dealing with Real-World Data
  • Apache Spark: Machine Learning on Big Data
  • Experimental Design / ML in the Real World
  • Deep Learning and Neural Networks

10 reviews for Machine Learning in Python (Data Science and Deep Learning) – Udemy

  1. Donny Phan

    Super practical. Lessons are catered towards anyone looking to find work in this industry. It felt very comprehensive and gave me a broad understanding of the programming spectrum

  2. Madhav raj Verma

    Thanks for your great effort. i am fully satisfied with this course the way you teach and your explanation are very clear ,The content you provide in your course no one can do this at this price.

  3. Sachin Gupta

    I really didn’t want to leave a low rating as Angela is a great teacher. The 1st half of this course was terrific. The 2nd half was terrible. Under the justification of “teaching students how to figure things out on their own”, pretty much all videos and all explanations were dropped. You were just told what to do, given links to documentation and told to figure it out on your own. I understand doing that to some degree, but to revert to that entirely for nearly half the content barely makes this a course. It’s just a list of things for you to learn, then you’re left on your own to learn them. The 2nd half was so bad, especially the data science component, that I didn’t bother finishing the course.

  4. Vincent Beaudet

    Amazing 40 days course.
    Angela is a great teacher.
    The other 60 days are all about web developement, interacting with web pages, on your own with little to no explanations. I did not expect that at all. I wanted to learn more about software and scripting.
    This left me disappointed , confused and i started to doubt myself. Not a fun experience after the amount of effort i’v put in this course.

    Exercices format and explanations for the first 40 days were worth it tho.

  5. Ben K

    Not just an introduction to python, but really helps you learn fundamental aspects of python and coding in general. Some parts may require some knowledge on the subject (data science comes to mind) and there is quite some web development in the course. So, a few areas were not completely to my liking (I would have liked to see it done differently), but this course deserves the 5 stars in my opinion.

  6. Omid Alikhel

    I found the method a bit difficult when a code is written and then changed back to something different, with no enough explanation of how something happened and where it came from or a step by step explanation of why something is happening, i have no doubt in the instructors talent, but we are beginners!

  7. Devang Jain

    The course is not updated and most of the solution codes don’t work and there are no video solutions towards the end

  8. Szymon Kozak

    I think that the course tutor is really good in giving right information to learn at the right time. Thanks to this fact, my understanding of coding in python after 29 days of learning is above my expectations.

  9. Begoña Ruiz Diaz

    Ha sido la mejor elección que podría haber hecho.

  10. Vaibhav Sachdeva

    I want to thank Angela for making such an amazing course. It really helped me explore more things with python.

Add a review

Your email address will not be published.